
Synthesis of Biological Models from Mutation Experiments

Ali Sinan Köksal1 Yewen Pu1 Saurabh Srivastava1

Rastislav Bodı́k1 Jasmin Fisher2 Nir Piterman3

1University of California, Berkeley 2Microsoft Research, Cambridge 3University of Leicester
koksal@cs.berkeley.edu, yewenpu@mit.edu, saurabhs@cs.berkeley.edu,

bodik@cs.berkeley.edu, jasmin.fisher@microsoft.com, nir.piterman@le.ac.uk

Abstract
Executable biology presents new challenges to formal methods.
This paper addresses two problems that cell biologists face when
developing formally analyzable models.

First, we show how to automatically synthesize a concurrent
in-silico model for cell development given in-vivo experiments of
how particular mutations influence the experiment outcome. The
problem of synthesis under mutations is unique because mutations
may produce non-deterministic outcomes (presumably by introduc-
ing races between competing signaling pathways in the cells) and
the synthesized model must be able to replay all these outcomes
in order to faithfully describe the modeled cellular processes. In
contrast, a “regular” concurrent program is correct if it picks any
outcome allowed by the non-deterministic specification. We devel-
oped synthesis algorithms and synthesized a model of cell fate de-
termination of the earthworm C. elegans. A version of this model
previously took systems biologists months to develop.

Second, we address the problem of under-constrained specifi-
cations that arise due to incomplete sets of mutation experiments.
Under-constrained specifications give rise to distinct models, each
explaining the same phenomenon differently. Addressing the ambi-
guity of specifications corresponds to analyzing the space of plausi-
ble models. We develop algorithms for detecting ambiguity in spec-
ifications, i.e., whether there exist alternative models that would
produce different fates on some unperformed experiment, and for
removing redundancy from specifications, i.e., computing minimal
non-ambiguous specifications.

Additionally, we develop a modeling language and embed it into
Scala. We describe how this language design and embedding al-
lows us to build an efficient synthesizer. For our C. elegans case
study, we infer two observationally equivalent models expressing
different biological hypotheses through different protein interac-
tions. One of these hypotheses was previously unknown to biolo-
gists.

This work was supported in part by NSF grant 1019343 to the Computing
Research Association for the CIFellows Project, and by NSF grant CCF-
1139011.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

Categories and Subject Descriptors F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Program Synthesis, Specification Ambiguity Analysis,
Executable Biology

1. Introduction
Diseases can be caused by perturbed gene and protein regulatory
networks. For example, disease X may be related to the levels of
proteins P and R, and P may negatively regulate R. Once the level
of P is decreased, high levels of R may cause disease X. To avoid
the disease, we may want to increase the level of P. One way to infer
protein regulatory networks is to carry out mutation experiments,
in which cells are genetically modified to suppress or enhance the
activity of a certain protein, leading the cell to exhibit abnormal
behavior such as uncontrolled cell divisions. If, by suppressing
the activity of protein P, the resulting phenotype can be attributed
to, say, an increased activity of a known protein R, we can infer
from this mutation experiment that P negatively regulates R. From
many such inferences, experimental biologists deduce regulatory
networks that describe the causal events leading to specific cell
fates and other behaviors.

Experimental biologists are concerned about the correctness of
their models that give a dynamic explanation of how the observed
outcomes are produced. Executable biology [14] addresses this
concern by building executable models that can be verified against
performed experiments. Treating cells as concurrent agents mod-
els the fact that cells do not evolve at synchronous rates [19, 20].
Verification ensures that a concurrent model is correct for all vari-
ations of cell growth rates, by exploring all possible executions of
the model [15].

Unfortunately, turning informal maps of regulatory networks
common in biological literature into executable models is laborious
because it involves explicitly defining timing delay and strength of
how multiple proteins regulate each other. In our previous work,
some of us developed a model of vulval cell fate specification
(i.e., how vulval cells make the decision to develop into a partic-
ular cell type) in the C. elegans worm [12]. This model correctly
predicted an unknown protein-protein interaction, however it took
several months to tweak the details of the model before it was veri-
fied against the experimental data. Whenever new experiments are
added, or when the model is extended with new components, simi-
lar tweaks are required.

This paper develops techniques for synthesizing executable
models from experimental observations and prior biological knowl-
edge. Two challenges make this synthesis problem interesting.
First, the outcomes of some cellular systems, such as fates of stem
cells, are non-deterministic. For example, in the C. elegans system
that we study, some mutations cause the six observed vulval pre-

cursor cells (VPCs) to acquire one of two alternative fates, presum-
ably due to races in the communication among cells. The desired
executable model must be able to reproduce all the observed be-
havior in order to be correct. We synthesize concurrent cell models
such that, for each observable outcome, there exists a schedule that
leads the model to produce the outcome. This requirement makes
our synthesis task a new problem, which is more complex than
what has been previously addressed.

Second, the incomplete set of mutation experiments forms only
a partial specification. Because only certain genes are mutated from
the total combinatorial set of possible mutations, we cannot be cer-
tain that an executable model that verifies against these mutations,
whether it is synthesized or manually constructed, is the sole expla-
nation of the cellular regulatory process. This is because there could
exist an alternative model that is observationally identical on the
current specification but observationally distinct on an additional
mutation. Finding such an additional mutation would uncover am-
biguity in the current specification.

To confirm that we have synthesized a unique model, we go be-
yond synthesis and develop methods for the analysis of the space
of plausible models, i.e., models that agree with the specification.
If observationally distinct models exist, we suggest a new mutation
that differentiates them. If no alternative models exist, we deter-
mine the smallest set of experiments that is sufficient to arrive at the
unique model. Finding such a minimal set is interesting because,
should biologists decide to redo the experiments for validation, they
only need to perform the experiments that suffice to synthesize a
unique model. Finally, it is interesting to ask whether there are ob-
servationally identical but internally different models. Such models
present regulatory networks where the network function is “imple-
mented” via different protein interactions. These models cannot be
distinguished by observing phenotypes; we must, say, instrument
proteins with fluorescent markers (similar to tracing the program)
and observe the cell during its development. This is a harder exper-
iment, but the cost of instrumentation is reduced with the help of
formal methods, as we can identify which genes to mark given the
internal differences between the observationally identical models.

We have built an efficient verifier, synthesizer and specification
ambiguity analyzer that implements algorithms for the analyses de-
scribed above. Our synthesizer takes as input the mutations, the
results observed under mutations and a template structure of the
cells, and from them it generates a verified model. The template of
the cell defines the cell components, and a superset of their inter-
connections (inhibition, activation), allowing biologists to formally
state existing knowledge on the system being modeled. Addition-
ally, the granularity of the discretized concentration levels for each
component is set a priori. What we synthesize is the internal logic
and timing of the components, i.e., how their concentration changes
in terms of their incoming signals, and we therefore off-load the
most difficult task of systems biology modeling to a computation
search engine.

This paper makes the following contributions:

1. We designed SBL, a domain-specific language for expressing
our models using an execution model with restricted asyn-
chrony called bounded asynchrony [15]. We embed SBL into
the Scala programming language [25] and build a lightweight
synthesizer, which is publicly available [21]. We describe how
to translate SBL programs into formulas in order to solve syn-
thesis and specification analysis problems (Sections 3 and 4).

2. We formulate the verification problem (Section 5.1) and the
program synthesis problem (Section 5.2). We observe that un-
like previous synthesis tasks, e.g., concurrent synthesis [28] or
synthesis from examples [17] or invariants [30], which are ex-
pressed as formulas with two levels of quantification (2QBF),

this problem is expressed as a formula with three levels of quan-
tification (3QBF), which makes it a new kind of problem. We
develop efficient algorithms for solving this problem that re-
duce to three communicating SAT solvers.

3. We develop methods for analyzing the specifications and the
space of plausible models (Section 5.3): We describe algorithms
for determining whether internally or externally distinguishable
models exist, and for finding minimal non-ambiguous specifica-
tions. These algorithms build on our 3QBF synthesis procedure,
and can potentially guide new wet-lab experiments by comput-
ing mutation experiments that disambiguate alternative models.

4. We evaluate our framework by describing that it efficiently (1)
generates valid models for the C. elegans VPCs. The model
fixes a bug in previous modeling, an incorrect modeling of a
component’s behavior when it is mutated; (2) shows that no be-
haviorally distinct models exist (even after extending the exper-
iment space to consider mutations for each component in the
VPCs), but two internally different models were synthesized,
one of which expresses a previously unknown biological hy-
pothesis; and (3) prunes the specification from forty-eight mu-
tation experiments to a minimal set of four experiments (Sec-
tion 6).

2. Technical Overview
This section presents an overview of the program synthesis and
specification analysis methods we have developed for modeling bi-
ological systems. We describe how scientists typically conduct mu-
tation experiments to infer informal genetic regulatory networks,
discuss how these models can be formalized, present our program-
ming language for expressing, verifying and synthesizing formal
biological models, and outline our synthesis and specification anal-
ysis algorithms for programs in this language.

2.1 Background on Mutation Experiments.
Here we give a brief background on mutation experiments, in the
context of developmental systems biology. The role of these exper-
iments is to understand cellular genetic regulatory networks, in par-
ticular those that control stem cell differentiation. These regulatory
networks are of interest in part because their failure may trigger
disease:

Cancer is fundamentally a disease of failure of regulation
of tissue growth. In order for a normal cell to transform
into a cancer cell, the genes which regulate cell growth and
differentiation must be altered. (Wikipedia)

Hence, to understand cancer, one needs to understand cell differ-
entiation. There are two common mechanisms for cell differenti-
ation: (1) a single cell divides into cells of different types based
on the asymmetric accumulation of substances inside the cell; and
(2) multiple identical cells differentiate by mutually communicat-
ing with the goal of arriving at coordinated fates [13]. We focus
on the second mechanism, and aim to mechanistically explain cell
differentiation by modeling intercellular communication.

The specific goal of developmental biologists is to infer the
program that stem cells “execute” to agree on their fates. This
program executes within one cell division cycle during which a
pluripotent cell decides its fate, potentially by communicating with
other cells.

One method for inferring this program is to mutate a set of
genes in the cell and observe the resulting changes in the cell
development. These experiments are particularly attractive because
phenotype changes resulting from the cell taking a different fate
are visually observable, avoiding the need for the more expensive

tracing of temporal protein levels by the means of tagging cell
proteins with fluorescent genes.

From gene mutation experiments, biologists infer protein inter-
actions, namely which proteins are activated or inhibited by the
mutated protein. For example, Yoo et al. [32] infers:

In this assay, depletion of [genes] lst-2, lst-3, lst-4, or dpy-
23, as well as ark-1, caused [a phenotype change, namely]
ectopic vulval induction, suggesting that they function as
negative regulators of the EGFR-MAPK [protein] pathway
[due to the phenotype change being linked to inhibition of
the pathway].

Biologists unify such piecemeal information to create informal
models of cellular programs, such as the one in Figure 1 from [12].
This model shows how five cells—an anchor cell (AC), three vul-
val precursor cells (VPC), as well as the hyp7 cell—communicate
to determine the fate of the VPCs. Each VPC contains the same set
of components, which is composed of receptors (let-23 and lin12)
and proteins (lst, sem-5, let-60 and mpk-1). The edges between
these components show the activation (→) vs. inhibition (a) re-
lationships between them.

Figure 1. An informal diagram of cell fate specification in a sys-
tem of three VPC cells [12]. These cells react to the inductive signal
(IS) from the anchor cell and communicate among themselves us-
ing the lateral signal (LS) to decide one of three fates.

While these informal models may capture all known interac-
tions among cell components, they do not describe the dynamics of
the cell, such as what race conditions permit the cells to take non-
deterministic fates that have been observed under some mutations.
Due to this lack of dynamic information, one cannot be certain that
these diagrams accurately describe the cell fate specification mech-
anism.

2.2 Executable Biology
The goal of executable biology [14] is to create executable models
that allow the observation of the dynamic behavior of biological
systems. Furthermore, these models are verified against experimen-
tal observations. For concurrent discrete models, verification, say,
with model checking, ensures that all executions of the model agree
with the observed outcomes. By verifying the program under the
non-deterministic interleaving of cell steps, we ensure that a pro-
gram is a faithful model of a cell system where cells may progress
at varying rates1 [15, 20].

1 Another way to model varying cell rates is to use stochasticity. In stochas-
tic models [2, 24], this non-determinism takes the form of protein mod-

It is challenging to create verifiable, concurrent models of com-
munication between cells. To transform the informal model in Fig-
ure 1 into an executable model, the designer must model (1) protein
levels; (2) timing delay or rates at which proteins react with other
components; and (3) how a protein behaves when both an activator
and an inhibitor of the protein are active. We have previously de-
veloped a verified model of C. elegans VPC cells; that model took
several months to develop [12]. This paper develops methods for
automatically synthesizing executable models of concurrent cellu-
lar systems.

Non-deterministic experiment outcomes. A mutation experi-
ment may produce different outcomes when run repeatedly. A cor-
rect model must reproduce all non-deterministic outcomes of a
given mutation experiment. We synthesize concurrent cell models
that satisfy this requirement by ensuring that each outcome that
must be observed is reproduced by the model under some inter-
leaving of cell steps.

For biological reasons, we use a restricted model of concur-
rency, bounded asynchrony [15]. Because neighboring cells always
advance at relatively similar rates, rather than at arbitrary speeds,
fully asynchronous models are too unconstrainted to reproduce the
observation in certain mutation experiments. One-bounded asyn-
chrony is one way to achieve restricted asynchrony, ensuring that
between two execution steps of a cell, no other cell can take more
than two steps.

Because of the requirement to reproduce all possible outcomes,
model synthesis in this setting is a more complex synthesis task
than what has been previously addressed. In this paper, we advance
the state-of-the-art in solving this new synthesis problem.

2.3 Modeling Language
We have developed a high-level programming model, SBL, in-
spired by biological diagrams such as the one in Figure 1. SBL in-
troduces programming abstractions for cells, cell components, and
interaction between components.

Programs in SBL (Figure 2) are composed of cells, which ex-
ecute according to a schedule s that adheres to the 1-bounded-
asynchrony constraint. The schedule is of bounded length; the num-
ber of steps in the schedule corresponds to the desired discretiza-
tion of the cell division cycle. Multiple cells can take simultaneous
steps. Cells are composed of components, which model proteins or
cell receptors. Components communicate with other components
in the same cell or in other cells; communicating components are
connected with directed edges, which correspond either to activa-
tion or inhibition relationships. Components of a cell execute syn-
chronously; all take one step when the cell is scheduled. Compo-
nents have state—a discretized concentration—usually modeled at
2-5 levels. When the component executes, it updates its next state
based on its current state and the states of its activators or inhibitors.
Each component is modeled with an update function (L,Lk)→ L,
where L are levels and k is the number of components activators
and inhibitors, combined.

Thanks to these abstractions, SBL programs are syntactically
smaller compared to models expressed in the Reactive Modules
language [1], which was the modeling language used in earlier
work [12]. As a result, we are able to develop efficient synthesis
algorithms for programs in SBL.

EXAMPLE 1. To illustrate, we consider the problem of designing a
simple distributed protocol. Mutations in this setting correspond to

els making probabilistic transitions, accounting for variability of protein
level change rates in nature. However, moving non-determinism from pro-
tein modeling into the scheduler allows protein models to be deterministic,
which in turn enables discrete verification techniques.

Bounded Asynchrony Synchronous Sequential

Components have Update FnsCells has ComponentsSystem has Cells

Execution Model

Structure

Figure 2. Hierarchical organization of programs in SBL. The sys-
tem is composed of cells, which in turn are composed of compo-
nents. At each time step, components update their discrete state us-
ing an update function, in terms of their previous state and incom-
ing signals from other components. Edges between components
denote which components can communicate between them. Cells
group together components that always move synchronously, and
they adhere to a restricted form of concurrency.

environment effects on the system being designed, and the specifi-
cation consists of input-output pairs defining the desired behavior
for given environments.

The goal is to design a weak consensus protocol for a three-
node system. (In a biological system, these nodes would be cells,
and node components would be proteins in the cells.) Two nodes
(called sensors N1 and N2) are listening to a signal from a mas-
ter node (a base station BS). When the base station sends a signal,
at least one of the sensors must make a decision to take a mea-
surement. When a sensor takes a measurement, it sends a release
message to the other sensor permitting the other sensor not to take
a measurement in order to save its power. The decision to make a
measurement is made on the basis of (1) the strength from the base
station; in normal conditions, the sensor that received the stronger
signal should take measurement as it is closer to the base station;
and (2) receiving the release message from the other signal. The
environment may cause the communication between the two sen-
sors to be down, sensors must take a measurement if no signal was
received from their peer. Similar to a system of cells progressing at
similar rates, we assume that sensors have bounded skew, i.e., they
run under bounded asynchronous schedules.

An implementation of this protocol is presented in Figure 3.
Figure 3(a) presents a hierarchical view of how cell communication
is organized, and which components each cell contains. On the left
is the top-most level with three nodes; the base station node (BS)
contains one component, the base node, which emits a constant
high (H) or low (L) signal to nodes N1 and N2. These nodes
decide to commit or to delegate by communicating with each other.
Figure 3(b), (c) and (d) show a graphical representation of update
functions for three components in nodes N1 and N2 (the remaining
simpler update functions have been omitted from the figure).

2.4 Language Extensions for Verification
To make programs in our language amenable to verification, we
now introduce component mutations, formalize specifications, and
define a correctness condition for programs.

We model cell mutation with an adversary who perturbs the
cell program such that a set of adversary-selected cell components
receive adversary-supplied semantics. Typically, a cell component
is mutated either to be suppressed or to stay at a high concentration

level throughout the execution of the program, although we also
support other mutation types.

The set of mutation experiments performed in the lab serve as
our correctness specification. Let F be the set of possible outcomes
of a mutation experiment. For example, if a cell can take one of
three fates, the outcomes of an experiment with six cells is a six-
tuple from F = {1, 2, 3}6. Let M be the set of possible mutations
that one can apply on a cell; typically, all cells involved in an
experiment are mutated identically. The set of experiments Exp is
a subset of M × F , where (m, f) ∈ Exp if the fate f has been
observed on the mutation m. With n cell components and three
possible mutations per component (e.g., no mutation; suppressed;
high level), M is exponential in the number of components of the
cell. As a result, biologists do not carry out all mutations.

Having an incomplete set of experiments implies that we have
to accommodate partial specifications. While the set of experiments
Exp is a subset of M × F , we assume that once a mutation has
been carried out, the lab has observed all possible outcomes for
this mutation by repeating the experiment a sufficient number of
times. This is a reasonable assumption for systems that have been
reliably studied by many independent labs, such as our case study,
vulval fate specification in C. elegans (Section 6). Without this
assumption, we would have no upper bound on the specification,
as any (m, f) pair could potentially be observed in experiments
that have not been performed so far. The assumption allows us
to synthesize with both positive examples (outcomes that must
be produced by the model for an experiment) and negative ones
(outcomes that must never be observed for an experiment). To
model such full knowledge for a single mutation, our specification
is a (partial) map E : M → 2F . The domain of E is the set of
performed mutations. If m ∈ dom(E) ∧ f 6∈ E(m), we assume
that mutationm cannot result in fate f ; the pair (m, f) is a negative
example. We say that a program P : M → F is a correct model
of E if, for each m ∈ dom(E), the execution P (m) may produce
each element of E(m) by controlling some aspect of the execution
of P , namely the schedule that controls the concurrent execution of
cells in the program.

Correctness Condition. To define a correctness condition, we
view an SBL program as a function P : (M,S) → F , where M
and F are domains of mutations (input configurations) and fates,
while S is the set of schedules adhering to bounded asynchrony.
The explicit schedule allows us to formulate a correctness condition
correct(P,E) of a program P on a specification E : M → 2F ,
which has two parts:

1. demonic scheduling: A demonic scheduler cannot make the
model produce a fate that is outside the specification, i.e.,
demonic(P) = ∀m ∈ dom(E).∀s ∈ S : P (m, s) ∈ E(m).

2. angelic scheduling: An angelic scheduler must be able to pro-
duce each fate in the specification, i.e., angelic(P) = ∀m ∈
dom(E).∀f ∈ E(m).∃s ∈ S : P (m, s) = f .

The demonic requirement asks that the model is an underapproxi-
mation of the specification, while the angelic requirement asks that
it is an overapproximation. Angelic scheduling adds a layer of dif-
ficulty that is handled through the construction of a novel verifier
(Section 5.1).

EXAMPLE 2. The specification for Example 1, expressed as a set
of experiments, is shown in Figure 4. The left column shows the
mutations (environment effects) M , while the right column shows
the desired outcomes F . It is interesting to note that we are using
the mutations as the environment adversary; the mutations describe
situations under which the nodes N1 and N2 must operate accord-
ing to the expected outcomes. For example, the last row describes
the situation in which the signal arriving at N1 is high, while the

N1 N2

BS

H L

Environment may prevent
inter-node communication

High or
Low trigger
signal from

BS

Base
Receiver

Decision

Delay

Lateral
Receiver

Base

Lateral
Emit

(a)

S0 / 0 S1 / 0

Base ∈ {L, H} ⋀ Lateral Rcvr = 1
⋁

Base = L

Base = O
Base = H ⋀ Lateral Rcvr = 1

S2 / 1
Base ∈ {L, H}

(b) Base receiver

S0 / 0 S1 / 1

Base Rcvr = 0
Base Rcvr = 1

Lateral Emit = 0 ⋀ Base Rcvr = 1
Lateral Emit = 1 ⋀ Base Rcvr = 0

(c) Lateral receiver

S0 / 0 S1 / 1

Base Rcvr = 1 ⋀ Lateral Rcvr = 0

Base Rcvr = 0 ⋀ Lateral Rcvr = 0
⋁

Lateral Rcvr = 1
Lateral Rcvr = 1

Lateral Rcvr = 0

(d) Delay

Figure 3. (a) Hierarchical view of node connections, and of their components. The top node is the base station, and the bottom nodes are
distributed sensors which may not communicate with each other due to environment effects. (b), (c), (d) Graphical representation of update
functions for base receiver, lateral receiver and delay components in the distributed sensors. Each state is labeled with its name and the output
value that the state maps to.

Base station trigger Inter-node comm. N1 N2
N1=H, N2=H Y C D

D C
C C

N1=L, N2=L Y C D
D C
C C

N1=H, N2=L Y C D
N1=L, N2=H Y D C
N1=H, N2=H N C C
N1=L, N2=L N C C
N1=H, N2=L N C C
N1=L, N2=H N C C

Figure 4. The specification for the distributed protocol example,
giving required outcomes for nodes N1 and N2 under a range of
scenarios of base station trigger signals and cases of whether the
two nodes can communicate between themselves (Y) or not (N). C
= Commit, D = Delegate.

signal arriving at N2 is low, and the communication between nodes
is down. We can think of this mutation as the adversary lowering
the signal to N2 and preventing the communication between the two
sensor nodes. The outcome C means that a node has committed to
taking a measurement while D means that the measurement was
delegated to the peer node.

2.5 Language Extensions for Synthesis
In order to allow synthesis of update functions in our programs,
we extend our language such that these can be left unspecified.
We describe partial programs in SBL and we define the synthesis
problem.

The input to the synthesizer is the specification E and a par-
tial program P ? to be completed by the synthesizer, if feasible,
into a program Ph such that the predicate correct(Ph, E) holds.
A partial program is a program template in which certain fragments
are parameterized and need to be supplied by the synthesizer. Our

language allows parameterization of (1) cell component behavior;
and (2) how components communicate. Because update functions
model timing delay and change rates of proteins, we found them
to be the hardest part of the model to produce manually. By pa-
rameterizing update functions, we can indirectly leave unspecified
also the connections between components: for example, if a biolo-
gist is unsure whether a protein P is inhibited by a protein Q or a
protein R, both Q and R can be connected to P; if Q turns out not
to influence P, the synthesizer is able to produce an update func-
tion for P that disregards the state of Q. The parameterized update
functions are constrained to agree with the activation and inhibition
semantics specified in the partial program by restricting their struc-
ture. This is achieved by stating monotonicity invariants on how a
protein’s input concentrations can influence its concentration; these
invariants are described in Section 4.2.

From the user standpoint, the partial program P ? encodes bio-
logical assumptions; it defines the components in the cells as well
as a superset of connections between them. It thus (1) conveys the
desire to model particular proteins and (2) states the knowledge
of which (superset of) pairs of proteins communicate. Partial pro-
grams encoding biological assumptions form the basis for the am-
biguity analysis described in Section 2.6.

Our synthesis problem is to find update functions h that yield a
correct model:

DEFINITION 2.1 (Synthesis problem). For a partial program P ?

to be completed with hole values h into Ph, the synthesis problem
is to find the update functions h that yield a correct model:

S(h) := ∃h : demonic(Ph) ∧ angelic(Ph)

A correct model must reproduce all observed experiments, and
this is captured in the angelic(P) correctness condition, which is
a formula with two levels of quantification (2QBF). This makes
the synthesis problem a 3QBF problem, while typical synthesis
problems are 2QBF (of the form ∃ hole ∀ input : φ).

Formulas with more than one level of quantification cannot
be handed off directly to an SMT solver, because the perfor-

mance of SMT solvers is only reliable for existential (one quan-
tifier) formulas. One way to tackle 2QBF problems is to develop a
counterexample-guided inductive synthesis (CEGIS) algorithm. In
the classical CEGIS algorithm, an inductive synthesizer produces a
program that is correct on a small sample of inputs; a verifier then
checks this candidate program on remaining inputs [29]. To handle
the 3QBF synthesis problem S(h), we develop a novel two-part
CEGIS algorithm, where an inductive synthesizer communicates
with two verifiers, one for each of the two correctness conditions,
and collects two kinds of counterexamples, one from each verifier
(Section 5.2).

EXAMPLE 3. The update functions for Example 1, presented in
Figures 3(b), (c) and (d) are produced by our synthesizer. These
update functions control how these components react to signals
from the base station and the peer sensor. The synthesizer takes four
seconds to generate these update functions. Intuitively, a sensor’s
protocol is simple: if you receive a weak signal, wait a little while
and wait for the release signal from the other sensor. If it does
not arrive, take a measurement. Still, even for this simple protocol,
designing the update functions manually is not trivial.

2.6 Ambiguity Analysis
Assume that a biologist produces an executable model that verifies
against all performed experiments. Now imagine that after he pub-
lishes his conclusions from this model, another biologist performs
a new mutation experiment whose outcome invalidates the model
as well as the conclusions drawn from it. (Given a new mutation ex-
periment mn+1, a model P becomes invalid if it cannot reproduce
an outcome observed for mn+1, or if it produces an outcome that
has never been observed after performing mn+1 sufficiently many
times.)

Naturally, we are interested in the question of whether one
can ascertain the validity of a model in the absence of complete
experiments. In particular, under what assumptions can a model be
considered the sole explanation of biological phenomena?

We view this question as analysis of ambiguity in the specifi-
cation E, and define an alternative model query that answers the
question. We first introduce aggregate outcomes and specification
ambiguity.

DEFINITION 2.2 (Aggregate outcome). Let P be a model and m
a mutation. The aggregate outcome of P on m, denoted P [m], is
the set of outcomes produced by P mutated with m over the set S
of all schedules: P [m] := {P (m, s) | ∀s ∈ S}

A specification E is ambiguous for a partial program P ? (that ex-
presses a set of biological assumptions) if we can find two com-
pletions Ph1 and Ph2 that disagree on some new experiment. Of
course, one of these models would become invalid given the new
experiment.

DEFINITION 2.3 (Specification ambiguity). Given a partial pro-
gram P ?, a specification E is ambiguous, denoted Amb(E,P ?),
if ∃m ∈ M ∃h1, h2. correct(P

h1 , E) ∧ correct(Ph2 , E) ∧
Ph1 [m] 6= Ph2 [m].

Note that m must be a new experiment, i.e., m ∈ M \ dom(E),
because the two models must agree with the specification E on all
mutations in dom(E).

In Section 6, we show that the specification for our case study is
unambiguous given provided biological assumptions (i.e., , there is
no need for more experiments at the desired level of modeling). We
also show that removing some historically important experiments
indeed makes the specification ambiguous, permitting alternative
explanations for coordination between cells.

DEFINITION 2.4 (Alternative model query). Given a partial pro-
gram P ? stating biological assumptions and an existing (perhaps
previously synthesized) model P (that need not be an instantiation
of P ?), the alternative model query finds a mutation m and a new
model Ph such that P [m] 6= Ph[m], or shows that no such h and
m exist.

We develop an algorithm to solve this query in Section 5.3.1.

EXAMPLE 4. We now ask whether we can find alternative mod-
els for Example 1 using the alternative model query. Suppose we
relaxed the specification and do not care about the outcome on the
caseN1 = L,N2 = L. We ask our synthesizer to generate models
under this relaxed specification such that they differ from the model
in Example 1. Our synthesizer generates an alternative model that
has much simpler behavior (as it need not be non-deterministic un-
der the row that we ignored). The update functions are shown in
Figure 5. When we ask for a mutation that distinguishes among the
models, the synthesizer produces the omitted row. (Note that this
last query is a special case of the alternative model query, such
that both input programs are fully specified.)

Now consider an experimental scenario where one wants to val-
idate a set of experiments performed in the literature by performing
them again. Is it possible to identify the smallest set of experiments
whose replication is sufficient to yield a non-ambiguous specifica-
tion?

To answer this question, we define a minimization query that
computes such a minimal set.

DEFINITION 2.5 (Minimization query). Given a non-ambiguous
specification E, the minimization query computes a minimal non-
ambiguous specification Em from E, i.e., ¬Amb(Em, P

?) ∧
¬∃E′, E′ ⊂ Em ∧ ¬Amb(E′, P ?).

An algorithm that solves the minimization query is presented in
Section 5.3.2.

In our case study, we show that, under our assumptions P ?, one
needs to replicate about 10% of experiments. This result suggests
that computing which experiments to perform might reduce unnec-
essary laboratory work.

EXAMPLE 5. We explored the minimization query for Example 1.
Our synthesizer prunes E down to the first three rows of Figure 4
as a minimally unambiguous specification. This is somewhat sur-
prising but it gives substantial insight into the problem, as the user
can now understand that the specification of the four cases with lost
communication was redundant, while the user may have presumed
that it was necessary.

3. Language
In this section, we present the formal semantics of our language, by
first defining the language constructs, and then giving operational
semantics rules for execution.

The basic construct in SBL is a component. We denote the set of
all components in a program by Comp. Components are connected
via a set of directed edges, defined by the relation Edges ⊆
Comp×Comp. Edges model channels of communication between
cell components. For each component c, we say a component c′

is an input component of c if there is an edge (c′, c) ∈ Edges .
For each c, we define the set of input components Inputc as
{c′ : (c′, c) ∈ Edges}. A component c has a state σc that
takes values from a finite domain Lc. Each component c is also
associated with an update function, denoted fc, that updates its state
σc, given the current value of its input components. The function
fc has domain Lc × Πc′∈Inputc

Lc′ and range Lc. The update

RUN-PROGRAM
S = s :: ss ¯̄σinit

s,Cells,Edges−−−−−−−−→ ¯̄σ′ 〈¯̄σ′, ss〉 Cells,Edges−−−−−−−→ 〈¯̄σfinal, []〉

〈¯̄σinit , S〉
Cells,Edges−−−−−−−→ 〈¯̄σfinal, []〉

RUN-PROGRAM-BASE

〈¯̄σ, []〉 Cells,Edges−−−−−−−→ 〈¯̄σ, []〉

ADVANCE-CELLS
∀cell ∈ Cells σ̄cell

¯̄σ,cell,Edges,s(cell)−−−−−−−−−−−−→ σ̄′
cell ¯̄σ′ = ∪cell∈Cells{σ̄′

cell}
¯̄σ

s,Cells,Edges−−−−−−−−→ ¯̄σ′′

CELL-ENABLED
∀σc ∈ σ̄ σc

c,¯̄σ,Edges−−−−−−→ σ′
c σ̄′ = ∪c∈cell{σ′

c}

σ̄
¯̄σ,cell,Edges,1−−−−−−−−→ σ̄′

CELL-DISABLED

σ̄
¯̄σ,cell,Edges,0−−−−−−−−→ σ̄

ADVANCE-COMPONENT
Σ = {σc′ : (c′, c) ∈ Edges} fc(Σ, σ) = σ′

σ
c,¯̄σ,Edges−−−−−−→ σ′

Figure 6. Small-step semantics for program execution. RUN-PROGRAM runs a schedule by advancing the cells according to each micro-step
in the schedule, with RUN-PROGRAM-BASE as the base case. ADVANCE-CELLS rule updates the states of cells, depending on the current
micro-step s. If a cell is enabled, it is advanced by applying the CELL-ENABLED rule. Conversely, if a cell is disabled, the CELL-DISABLED
rule keeps its state unchanged. ADVANCE-NODE rule updates the state of a component by invoking the update function on the states of all
input component states and its own state

S0 / 0 S1 / 1

Base ∈ {O, L}
⋁

Lateral Rcvr = 1

Base = H ⋀ Lateral Rcvr = 0
Lateral Rcvr = 1

Base = H ⋀ Lateral Rcvr = 0

(a) Base receiver

S0 / 0 S1 / 1

Lateral Emit = 1
Lateral Emit = 0

(b) Lateral receiver

S0 / 0 S1 / 1

Base Rcvr = 0 ⋀ Lateral Rcvr = 1

Lateral Rcvr = 1
Lateral Rcvr = 0

Base Rcvr = 1
⋁

Lateral Rcvr = 0

(c) Delay

Figure 5. Update functions generated using the alternative query
model to differentiate from the model in Example 1 under ambigu-
ous specification, obtained by removing row 2 of Figure 4.

function for a component is chosen from a sequence of functions
Fc := [fc,1, . . . , fc,k] that describe possible alternative behaviors
of that component under different mutations, i.e., the natural and
altered behaviors of the component.

A cell is a set of components. Within a cell, we have a syn-
chronous execution model, i.e. all components of a cell update
their state simultaneously. The state of a cell σ̄ is defined as the
set of states of the components that the cell contains. We denote
the set of all cells in a program by Cells . Cells forms a partition
on all the components in the program. A pair of cells (cell1, cell2)
are said to be communicating if there exists a pair of components
(comp1, comp2) connected by an edge in the respective cells.

The pair (Cells,Edges) constitutes a program. The program
state ¯̄σ is the set of all cell states in the program. The input to
a program is a configuration (i.e., a mutation). A configuration is
a function from components to integers, that expresses for each
component c the index of the function in Fc that should be used
as the update function fc. The output of a program is defined as the
state of user-designated components in the final state reached in an
execution.

Partial Programs. The sequence Fc of functions associated with
component c need not be specified concretely. When at least one
component function is not concretely specified, we say the program
is partial. Typically, users will only concretely specify the behav-
iors under well-understood mutations that would not make sense to
redefine. For example, a typical example in the biological case is
the knock-out mutation which subdues the function of the compo-
nent and fixes it to the OFF state.

Operational semantics Figure 6 shows the small-step semantic
rules for program execution. Here, we assume that the program
starts in the initial state ¯̄σinit , and that it has already been pre-
processed by fixing a particular update function for each compo-
nent according to the input configuration. The semantics are de-
fined recursing down the program structure. The RUN-PROGRAM
rule executes the program by moving all cells in accordance with
a schedule S. The ADVANCE-CELLS rule captures the intuition
that each schedule step s partitions the cells into the sets enabled
(for which s(cell) = 1) and disabled (for which s(cell) = 0).
Rules CELL-ENABLED and CELL-DISABLED describe how cell
states are updated for enabled and disabled cells, respectively. For
the disabled cells, the state remains unchanged. Enabled cells are
advanced by applying the ADVANCE-COMPONENT rule for each
component, which corresponds to updating the component state by
reading the state of connected neighbors and using the component’s
update function.

Bounded Asynchrony. The concurrency notion that our execu-
tion model admits is bounded asynchrony. This model faithfully
represents biological systems where complete synchrony is too

strict, and complete asynchrony does not accurately model cells
that progress at similar but not identical rates.

Fisher et al. [15] define bounded asynchrony with schedules
consisting of micro- and macro-steps. Each micro-step consists of
a subset of the components stepping synchronously. This is what
we have been calling a schedule up to this point. Next we block
micro-steps together into a macro-step. Each k-bounded macro-
step consists of all components taking k steps split across multi-
ple micro-steps. For example, let us consider three nodes and the
schedule 110 (micro-step) indicates the first two take a step while
the third waits. Suppose the second schedule is the micro-step 001.
Then the two micro-steps together make a macro-step in which all
nodes take one step and which is therefore 1-bounded.

Schedules over micro-steps are much more expensive to enu-
merate than schedules over macro-steps, especially 1-bounded
macro-steps. Schedules over 1-bounded macro-steps (where each
node necessarily moves once), can be succinctly encoded without
loss of information as pairwise happens-before between connected
nodes. That is, a 1-bounded macro-schedule is an assignment of<,
>, or = to each edge in the node topology2. The following lemma
holds:

LEMMA 1 (Fisher et al. [15]). A micro-schedule exists if and only
if a realizable macro-schedule exists over the node topology.

Here a realizable macro-schedule is one that does not cause an in-
consistent ordering of nodes in a cycle. We use this result critically
to efficiently encode partial programs as formulas (Section 4), and
restrict schedules to be 1-bounded.

Using macro-steps allows us to define a compact symbolic en-
coding of our programs into formulas, which would have not been
possible with micro-steps.

4. Translating Programs into Formulas
We now describe how to translate execution of SBL programs to
SMT formulas, enabling verification and synthesis. We first give
rewrite rules that construct a formula corresponding to the symbolic
execution of a program. We then describe additional constraints
that encode biological domain knowledge to be used in synthesis
of programs.

4.1 Translation of Program Execution
The translation of program execution is parameterized by the fol-
lowing symbolic variables:

• For each time step t and each pair of connected cells (c1, c2),
we define a channel configuration variable channel t,c1,c2 that
must hold exactly one of the three values “<”, “>” and “=”.
These variables encode the symbolic schedule for program ex-
ecution. Variables channel t,c1,c2 and channel t,c2,c1 are as-
serted to be consistent in the following way:

channel t,c1,c2 = “>”⇔ channel t,c2,c1 = “<”
∧

channel t,c1,c2 = “<”⇔ channel t,c2,c1 = “>”
∧

channel t,c1,c2 = “=”⇔ channel t,c2,c1 = “=”

• For each component c, we represent each function fi ∈ Fc as a
lookup table with symbolic values for each value in its domain
Lc×Πc′∈InputcLc′ . Entries of the lookup table are represented
by the variables tablevc,vc1 ,...,vcn that take values in Lc.

• For each component c, we represent its mutation symbolically
as a variable mc, that encodes the index of the function to use

2 Technically, for micro-steps it is the sequence of ordered bell numbers or
Fubini numbers [16], while for 1-bounded macro-steps it is 3num edges.

among Fc. If mc has value i, then the function fc,i will be used
as the update function of component c.

• For each component c at each execution step, we create a
variable σt,c that takes values in the domain of Lc. These
variables represent the component state symbolically over the
execution of the program.

Translation rules for compiling program execution to an SMT
formula are shown in Figure 7.

TRUN is the top-level rule for translating the execution of a pro-
gram, unrolling the execution for k steps. TREAD uses the symbolic
macro-schedule values to assert the input states that should be read
by each component at a given macro-step. If a cell cell runs before
or at the same time as another cell cell′ (i.e. the macro-step vari-
able between the two cells at a time step has value “<”, or “=”), the
components in cell reads their input states from cell′ at the previ-
ous time step. On the other hand, if cell runs after cell′, it reads its
input states from the current time step. Finally, TUPDATE asserts that
the state of a component is updated in terms of its symbolic mu-
tation, input state, own state, and update function. The outermost
conjunction enumerates over possible update functions. For each
mutation, the inner conjunction enumerates possible input value
tuples of the update function. The symbolic state is updated given
symbolic lookup variables for the chosen mutation.

This translation does not impose any constraints on the param-
eterized update functions, and therefore encodes a very large space
of possible update functions. To help with the program synthesis
task, we need to restrict this space. This is achieved in Section 4.2
by asserting biologically motivated constraints on the structure of
the parameterized update functions.

4.2 Domain-Specific Constraints on Update Functions
The translation in Section 4.1 does not impose restrictions on the
structure of the update functions that are left unspecified by the
user. When modeling biological systems, formulating a hypothesis
typically involves stating high-level invariants about whether a
component activates or inhibits another one. In this section, we
describe how the space of update functions is restricted using this
high-level knowledge.

We first formalize how the high-level biological invariants are
stated by defining a partial labeling of edges with activation and
inhibition semantics.

DEFINITION 4.1 (Edge labeling). Given a partial program P ?,
the partial function label : Edges → {activating , inhibiting}
annotates edges in P ? as either activating or inhibiting.

As a component’s state expresses its activation level, we assume
the existence of a total order on its possible states. This will allow
us to state the properties that restrict the space of update functions.

DEFINITION 4.2 (State ordering). Let c be a component, and Lc
the set of possible state values for c. The state ordering ≤c is a
total order on Lc.

Using the edge labeling and the state ordering for each component,
we now define a partial order on the combined input values for a
component.

DEFINITION 4.3 (Input ordering). Given a component c with up-
date function fc : Lc × Lc1 × . . .× Lcn → Lc, the partial order
�c on elements of Lc1 × . . .× Lcn is defined as:

(v1, . . . , vn) �c (u1, . . . , un)
:= ∀i ∈ {1, . . . , n}.

(label((ci, c)) = activating ∧ vi ≤ci ui) ∨
(label((ci, c)) = inhibiting ∧ vi ≥ci ui)

TRUNJCells,EdgesK :=
∧

t∈{1,...,k}

∧
cell∈Cells

∧
c∈cell

TREADJt, c,EdgesK ∧ TUPDATEJt, c,EdgesK

TREADJt, c,EdgesK :=
∧

(c′,c)∈Edges

c′∈cell′
c∈cell


((channelt,cell′,cell=“<”)⇒(σread,t,c,c′=σt−1,c′))

∧

((channelt,cell′,cell=“=”)⇒(σread,t,c,c′=σt−1,c′))

∧

((channelt,cell′,cell=“>”)⇒(σread,t,c,c′=σt,c′))



TUPDATEJt, c,EdgesK :=
∧

fi∈Fc

mc = i⇒

 ∧
(vc,vc1 ,...,vcn)∈dom(fi)

(σt−1,c,σread,t,c1,c,...,σread,t,cn,c)=(vc,vc1 ,...,vcn)

⇒

σt,c=tablevc,vc1 ,...,vcn


Figure 7. Translation rules for symbolic execution of programs.

Intuitively, � is a partial order on the strength of the input values
to a component, based on the activation and inhibition annotations.
We now describe two kinds of invariants that restrict the space of
possible update functions.

Input monotonicity Our first property is motivated by the follow-
ing observation: If there is an activating edge from component c1
to component c2, then an increase in σc1 should not have by it-
self the effect of decreasing σc2 . Conversely, if c1 and c2 are con-
nected through an inhibiting edge, then a decrease in the value of
σc1 should not result by itself in the decrease of σc2 :

∀i1, i2 ∈ Lc1 × . . .× Lcn . ∀v ∈ Lc.
i1 �c i2 ⇒ fc(v, i1) ≤c fc(v, i2)

State monotonicity The second property that we assert imposes
a monotonicity constraint on fc in terms of the value of σc. This
property expresses that, for the same input value, a greater the
activation level of the component cannot be updated to a smaller
value:

∀i ∈ Lc1 × . . .× Lcn . ∀v1, v2 ∈ Lc.
v1 ≤c v2 ⇒ fc(v1, i) ≤c fc(v2, i)

We found that asserting constraints that encode these two invari-
ants based on user annotations on component connections is crucial
for ensuring that the structure of update functions agree with exist-
ing biological knowledge.

5. Synthesis and Querying Spaces of Models
In section 4, we described how we translate program execution to
formulas. In this section, we present algorithms that leverage this
translation for verification and synthesis, as well as specification
ambiguity analysis.

The formula that encodes program execution parameterizes
(1) update functions (which are the holes in partial programs);
(2) schedules; and (3) input configurations (i.e., mutations). The
space for update functions and the space for schedules are typically
very large. However, specifications are typically wet-lab experi-
ments which are sparse and inherently small (of order 102 exper-
iments). Based on this observation, we develop algorithms that
unroll quantifications for input configurations only.

In the following, we refer to the symbolic output parameter
of translating the execution of P with input m and schedule s as
P (m, s), and we denote by E the specification (given as a partial
function from M to 2F).

5.1 Verifying Programs
The correctness condition presented in Section 2.4 is defined as:

correct(P) := demonic(P) ∧ angelic(P)

The properties demonic(P) and angelic(P) are in 1QBF and
2QBF respectively. As a result, the correctness condition correct(P)
is in 2QBF.

We verify correctness conditions demonic(P) and angelic(P)
separately, using a verifier Vd that searches for demonic schedules
that lead to the violation of the specification, and a verifier Va
that checks whether all non-deterministic outcomes for a given
mutation can be reached for some angelic schedule.

Verifying for demonic schedules. The formula demonic(P)
states that the set E(m) is an upper bound for all observed out-
comes of P with input m:

demonic(P) := ∀m ∈ dom(E). ∀s ∈ S. P (m, s) ∈ E(m)

To check this property, we attempt to disprove it by searching for
a demonic schedule that produces an unobserved outcome for an
input in dom(E), the domain of E. Given the observation that
there is a small set of input values in dom(E), we solve this
formula by unrolling the existential quantification over this set, and
by querying symbolically for a demonic schedule. The condition
P (m, s) 6∈ E(m) is expressed by unrolling over values in E(m),
which is also a small set. We thus solve the 1QBF formula:∨

m∈dom(E)

∃s.
∧

f∈E(m)

P (m, s) 6= f

If this formula is satisfiable, P does not satisfy demonic, and
we obtain a concrete counterexample (m, s) such that running P
on input m and schedule s leads to an unobserved fate. If it is
unsatisfiable, then P is correct with respect to demonic.

Verifying for angelic schedules. The angelic condition states
that all outcomes in the set that m maps to must be observable,
i.e. appear in some execution of P on m:

angelic(P) := ∀m ∈ dom(E), f ∈ E(m). ∃s. P (m, s) = f

This amounts to searching for an angelic schedule for each f ∈
E(m). We reduce the 2QBF correctness property to an effi-
ciently solvable 1QBF problem by unrolling values of the domain
dom(E), again based on the assumption that this is a small do-
main. To unroll angelic(P), we construct the following query for
each m ∈ dom(E) and for each f ∈ E(m):

∃s. P (m, s) = f

If the above formula is unsatisfiable for some m and f , then no
angelic schedule can be found for reaching that outcome when run-
ning P , and (m, f) is a counterexample input/output pair witness-
ing that angelic(P) does not hold. If the formula is satisfiable for
each m ∈ dom(E) and for each f ∈ E(m), then verification for
angelic schedules succeeds.

demonic verifier angelic verifier

counterexample
m�

i, fi

counterexample
mi, si

(m1, P (m1, s1)) ∈ E (∃s.P (m′
1, s) = f1)

∃h. ∧ · · · ∧ ∧ ∧ · · · ∧
(ml, P (ml, sl)) ∈ E (∃s.P (m′

k, s) = fk)

Figure 8. The synthesizer consists of three communicating
solvers. The two verifiers generate two kinds of counterexamples,
and the synthesizer generates models that satisfy the constraints for
all counterexamples.

A program verifies against the specification E if it verifies
against both Vd and Va.

5.2 Synthesizing Programs
In our language, it is possible to define a partial program P ? that
admits freedom in the update functions of its components. We now
present a synthesis algorithm for finding update functions in P ?

such that the completed program Ph is correct with respect to
the correctness condition correct(P). Our procedure leverages the
two verifiers Vd and Va to check correctness properties demonic
and angelic respectively, in order to solve the following synthesis
problem:

S(h) := ∃h. demonic(Ph) ∧ angelic(Ph)

This formula is in 3QBF, due to the quantifier alternation ∃∀∃
resulting from angelic(Ph) being nested within the quantification
over h.

We solve S(h) by developing a counterexample-guided induc-
tive synthesis (CEGIS) algorithm, which decomposes the 3QBF
problem into two 1QBF solvers (an inductive synthesizer and the
demonic verifier Vd) and one 2QBF solver (the angelic verifier Va).
The inductive synthesizer produces a candidate model that is cor-
rect on all counterexamples and sends this model to both verifiers.
If both approve the model, the synthesis successfully terminates. If
either fails, counterexamples are produced, refining the correctness
constraints placed on the inductive synthesizer, making it eventu-
ally produce a correct model (or conclude that no model exists in
the model space described by P ?). The solver architecture is shown
in Figure 8.

Precisely, the synthesizer maintains two sets of counterexam-
ples, CE1 ⊆ dom(E)×S and CE2 ⊆ dom(E)×F . The first set
contains pairs of inputs and schedules, and is computed with coun-
terexamples given by the verifier for demonic schedules. The sec-
ond one is a subset of the input/output specifications, and is in turn
computed with counterexamples found by the verifier for angelic
schedules. Starting with initial sets CE1 and CE2, the synthesizer
solves at each step the following formula to find a candidate model:

∃h.

 ∧
(m,s)∈CE1

Ph(m, s) ∈ E(m)


∧

 ∧
(m,f)∈CE2

∃s. Ph(m, s) = f



If the above formula is unsatisfiable, the partial program cannot be
completed, i.e. synthesis fails. Otherwise, the valuation of h defines
a candidate model that we attempt to verify using verifiers Vd and
Va. If at least one of the verifiers returns with a counterexample,
the synthesizer attempts to find a new candidate after updating the
sets CE1 and CE2 with the counterexamples returned by either
verifier. If a candidate model is validated by both verifiers, we
obtain the completed program Ph that is correct with respect to
the specification E.

5.3 Querying for Ambiguity Analysis
Given the above procedure for synthesizing programs, we are now
interested in querying spaces of possible models. In particular, we
analyze ambiguity of specifications. If a specification is underspec-
ified, we aim to reduce ambiguity by expanding it. If, on the other
hand, it is overspecified, our goal is to reduce the specification size
without introducing ambiguity.

Computing Aggregate Outcome We first give an iterative algo-
rithm to find aggregate outcome set for a given program p and a
given input m. The aggregate outcome set P [m] is the set of out-
comes of P on m over all schedules. We approach the task by first
computing the outcome of P on m under an initial schedule s. We
then enlarge the set of observed outcomes Obs by searching for a
schedule leading the program to produce a previously unseen out-
come. To find such an outcome, we build a formula that states that
the new outcome must differ from each value in the Obs set in-
ferred so far. Each step of the algorithm thus attempts to extend
Obs by solving the following formula:

∃s.
∧

f∈Obs

P (m, s) 6= f

If this formula is satisfiable, we obtain an outcome that we add to
the setObs, and then attempt to solve the formula with the updated
set. If it is unsatisfiable, we have obtained all outcomes that can be
produced by P on input m.

5.3.1 Alternative Models
To ascertain that a given hypothesis is the sole explanation to a
biological phenomenon, a biologist would like to learn whether
there exists another hypothesis that differs from the first on its
observable outcome on an unperformed experiment, but is correct
on the known experiments. Given a program P1 that expresses the
first hypothesis, and a partial program P ?

2 that expresses a space of
alternatives for the second, we can state this query formally as:

∃m.∃h.correct(Ph2) ∧ Ph2 [m] 6= P1[m]

If this query is satisfiable, then there is an alternative program Ph2
and a new experiment m such that performing the experiment m
will invalidate at least one of P1 and Ph2 . We now describe an
algorithm to solve this query.

Given the hypothesis that the space of mutation experiments
M is small, we approach this task by unrolling the existential
quantification over m. The problem then reduces to synthesizing
Ph2 for a given mutation m, such that Ph2 [m] 6= P1[m].
Ph2 [m] can differ from P1[m] in two distinct ways: (1) It can

either contain an output value not in P1[m]; or (2) it can be a strict
subset of P1[m]. We give one algorithm for each case.

Case 1. A program Ph2 that produces an outcome not seen in
P1[m] can be found by augmenting the synthesis query described
in Section 5.2 with a constraint asserting that there exists a schedule
that leads Ph2 to produce an outcome not in P1[m], i.e., Ph2 [m] \
P1[m] 6= ∅. We solve the following formula to answer this query:

∃h. correct(Ph2) ∧ ∃s.Ph2 (m, s) 6∈ P [m]

This formula is satisfiable if and only if there exists a completion
of program Ph2 that produces an outcome not in P [m]. It is 3QBF,
and is handled using the mechanism of a synthesizer communicat-
ing with two verifiers to perform inductive synthesis described in
Section 5.2.

Case 2. Alternatively, Ph2 may be found by attempting to syn-
thesize a model that always produces outcomes in a strict subset of
P1[m]. This is achieved by discarding elements of P1[m] one at a
time, to see if such a model can be found. We do not need consider
all subsets of P1[m], as we only state that P1[m] \ {f} is only an
upper bound of the possible outcomes for input m.

∃h. correct(Ph2) ∧(∨
f∈P1[m] ∀s. P

h
2 (i, s) ∈ P1[m] \ {f}

)
This formula is satisfiable if and only if there exists a completion of
program Ph2 such that its observable outcome set is a strict subset
of observable outcomes of P1 on input m. Similarly to Case 1, we
use the scheme of cooperating solvers described in Section 5.2 to
solve this formula.

5.3.2 Minimization
In a context where performing experiments is an expensive process,
a researcher may want to obtain a minimal non-ambiguous speci-
fication that sufficiently constrains the space of models to validate
a hypothesis. Given a partial program P ? that expresses a hypoth-
esis, and a specification E that is non-ambiguous with respect to
P ?, the task of finding a minimal non-ambiguous specification Em
is stated as:

¬Amb(Em, P ?) ∧ ¬∃E′, E′ ⊂ Em ∧ ¬Amb(E′, P ?)

We compute a minimal specification Em by iteratively restricting
the domain of E for the partial program P ?. This can be done
by invoking the alternative model query once for each mutation
in dom(E).

At each step, we check whether program P ? can be completed
to a program Ph that decides a set of outputs Ph[m] distinct
from E(m), considering as specification the set of currently non-
redundant input values. This check is performed using the alterna-
tive model query described in Section 5.3.1. If synthesis fails, m
is marked as redundant. Otherwise, removing m from the specifi-
cation leads to ambiguity, and as a result m should be kept in the
final set of pruned inputs. Upon considering all inputs in the do-
main of E, a minimal specification is obtained by removing from
the domain of E those inputs that are marked as redundant.

6. Case Study: C. elegans vulval development
We attempt to synthesize a model for the vulval precursor cells
(VPCs) that start off identical but through coordination among
themselves and with the Anchor Cell (AC) agree on specific fates.
From informal descriptions of protein interactions found in bio-
logical literature, we develop our template VPC ?. The template is
shown in Figure 9(a) (derived from Figure 1.)

From the template, we observed that there are nodes with ex-
tremely simplistic on-off behavior. These are LS, the downstream
nodes of the cascade (sem5, let60, and mpk1) and the fate nodes.
While we can introduce holes in them (with expected performance
degradation, yet not being intractable), biologists have a very clear
understanding of these nodes, and so expect to see a simple and
known behavior in them. Additionally, introducing holes in these
nodes leaves too much freedom to the synthesizer, such that gener-
ated models do not have a biological interpretation.

Therefore we run our tool with unknown update functions for
lin12, let23, and lst. The generated update functions satisfy the

specification and template structure of the program. On the other
hand, lin12, which has a very well understood behavior, colludes
with the other components to give models that are hard to explain
to the biologists. Therefore, we additionally allow the user to spec-
ify the behavior of lin12 concretely and synthesize let23 and lst.
Let23 and lst are indeed the most complex functions in their timing
delays (and have the most complex interconnection dependences).
Indeed, in our attempts prior to synthesis (when designing the ver-
ifier) to write the model by hand, we actually failed. Additionally,
the models previously written did not maintain the requisite lin12
behavior. Therefore, our synthesizer was solving a problem that had
been impossible to solve manually, even after considerable effort.

The specification consists of forty-eight experimental observa-
tions of the fate outcomes of six VPC cells in sequence. Some of
these observation have non-deterministic outcome fates. A frag-
ment of the specification is shown in Figure 9(b).

From the template and these experiments, our synthesizer gen-
erated update function solutions to let23 and lst that were confirmed
by the biologists to be plausible behaviors. The output from the
synthesizer is shown in Figure 10(a).

It is important to note that this is a very significant achieve-
ment. Previously, when we had written down a model for VPCs in
RM [12] it had the following flaws: (1) The previous model did
not satisfy a biological invariant required on the lin12 component,
and all efforts to fix the model failed, (2) RM is too expressive and
therefore there were cases where the model “read the future” which
was hard to interpret biologically, (3) the model lacked readabil-
ity prohibiting debugging, extension, and biological interpretation.
Our synthesized alternative model solves all these. Our first bio-
logically relevant result is therefore that through synthesis we have
revalidated the (experimentally-confirmed) prediction from previ-
ous work, without the vagaries of human modeling.

6.1 Specification ambiguity for C. elegans VPC models
Next, we analyzed the ambiguity in the specification. The important
biological unknown is the specific node within the cascade let23-
sem5-let60-mpk1 that sends out the inhibitory signal to lin12 and
lst. We attempted experimenting with all four options under our
definition of understanding the specification ambiguity:

Alternative models for particular input configuration 44 of the
48 experimental observations are deterministic. We wanted to know
how many models exist if only the deterministic outcomes are
asserted. We found that under this relaxed specification, all four
options of inhibition coming from any node of the cascade work.

Then using the alternative model query from Section 5.3, we
asked for a model including any one of the four remaining out-
comes. The synthesizer eliminates two that have inhibition ema-
nating from let60 and mpk1. This was significant since it formally
confirmed the biologist’s intuition that the inhibition comes from
higher up in the cascade. Additionally, it showed that sem5 (in addi-
tion to let23, which was conjectured earlier) was a valid possibility
for the inhibitor.

Input configuration for disambiguating models Next, we at-
tempted to observationally distinguish these two remaining valid
models. Our 48 observations mutate the entire cascade (all nodes
let23 to mpk1) together. We wanted to infer if a finer-grained muta-
tion exists that distinguishes these two remaining mechanistic hy-
potheses. We expanded the experimental set by enumerating all
possibilities of the cascade nodes (24 possibilities of expansion for
each of the 48 rows) leading to 384 experiments. Our synthesizer
shows that no other mutations exist that would observationally dis-
tinguish these two hypotheses. This saves the biologist significant
effort (336 experiments, each of which are expensive and time-
consuming) as they now know that mutation experiments will not

??

??
AC

M LHMLL

lin-3lin-15

let23

sem5

let60

mpk1

lin12

lstLS

fate0

fate12fate23

3' 2' 1' ??
lin12

lst

let23

VPC?

Exp# Mutations Fate pattern
AC lin12 lin15 Vul lst P3.p P4.p P5.p P6.p P7.p P8.p

1 Formed wt wt wt wt 3 3 2 1 2 3
5 Formed wt ko wt wt 1/2 1/2 2 1 2 1/2
7 Formed wt ko ko wt 3 3 3 3 3 3

13 Formed ko ko wt wt 1 1 1 1 1 1

Figure 9. (a) The template VPC ? we use for our experiments, which is derived as simply the union of connections known to biologists [12]
as informally shown by Figure 1. The “fate” nodes are instrumentation nodes to help read out the outcome. (b) A small fraction of the
specification E (4 rows out of 48), obtained from literature in biology [12]. A fate pattern of 1/2 indicates that both 1 and 2 are outcomes
observed in experiments.

suffice to distinguish these explanations and out-of-band experi-
ments need to be performed.

Inferring the minimal specification We run our minimization
query from Section 5.3 for each of the VPC queries, with significant
results. We infer that, for the space we are searching over, only four
experimental observations suffice to yield a unique model. This
set contains all non-deterministic outcomes, and additionally others
that together constrain the system enough to yield the unique model
that is explained by the 48 experiments.

Wet-lab predictions Our exploration demonstrated that (1) let23
is not the only possibility for inhibition, but sem5 is as well;
(2) let60 and mpk1 cannot play that role; and (3) the models using
let23 and sem5 cannot be distinguished observationally. These sug-
gest a possible inhibition from sem5, that cannot be distinguished
through mutation experiments on the components included in our
model, therefore other types of experiments would need to be done.

7. Performance evaluation
We implemented our language as an embedded DSL in Scala. Our
synthesis and analysis framework, also implemented in Scala, uses
the Z3 theorem prover [10] as its underlying constraint solver. We
interface with Z3 through the ScalaZ3 library [22]. Our framework
consists of 5K lines of code.

We show performance results for the evaluation of our synthesis
procedure in Figure 11(a). For each example, we present total
execution time, maximum memory usage, number of calls to the
underlying SMT solver Z3, average call time, the structure of holes
in the partial programs, as well as the search space for synthesizing
update functions. VPC1, VPC2, VPC3 and VPC4 are models of
the fate decision in C. elegans vulval precursor cell development
that express each different biological hypotheses about the cells
through their topology. VPC1 and VPC2 are synthesized using a
specification E with domain size 48, while VPC3 and VPC4 are
synthesized using a specification E′ whose domain is restricted
to 44 elements. Sensors is the example introduced in Section 2.
For each example, we report the total running time for synthesis,
the maximum memory usage, number of calls to the underlying

SMT solver Z3, the average time Z3 takes to solve these queries, a
description of holes in the partial program as a sequence of number
of states for each unspecified update function, and the size of the
search space for synthesizing these functions.

In all cases, we find that even for a complicated synthesis prob-
lem such as the VPCs, our synthesizer is efficient.

In Figure 11(b), we present performance results for the pruning
procedure described in Section 5.3.2. We report the domain size
for the result of the procedure and the initial domain size in the
pruned/total column.

As expected, the time for pruning is significantly higher than
for only synthesis. This is because multiple synthesis and verifica-
tion queries are solved in the process of minimization. However,
compared to the amount of time this could potentially save the bi-
ologists, i.e., months or even years of work in doing redundant ex-
periments, our inference times are insignificant.

8. Related Work
Inference of biological models While model checking of (man-
ually written) logical biological models has been an active area of
research, we are not aware of work that synthesizes these mod-
els. In contrast, a growing body of literature exists on inference of
non-logical models. The first class of such models uses ordinary
differential equations (ODEs). An example of ODE model infer-
ence from temporal and spatial data is the work by Aswani et al.,
who reduce the amount of prior knowledge needed to infer an ac-
curate model [3]. Rizk et al. find parameters for ODE models by
optimizing a notion of continuous degree of satisfaction of tempo-
ral logic formulas [27]. Because ODE models are continuous, these
techniques do not appear directly applicable for inference of logical
models based on concurrent systems.

Machine learning has also been used to infer biological models.
Barker et al. use time series data of protein levels to infer whether a
protein is an activator or a suppressor of another protein [4]. Time
series data of concentrations is not available in our setting, so these
approaches do not apply to the inference of our models.

S0 / 0 S1 / 0

ac = 3

S2 / 1

ac ∈ [2,3] ⋁
(ac ∈ [1,2] ⋀ hyp = 1)

ac = 0 ⋁
(ac ∈ [0,1] ⋀ hyp = 0)

(ac = 2 ⋀ hyp = 0) ⋁
(ac ∈ [1,2] ⋀ hyp = 1)

(ac = 1 ⋀ hyp = 1) ⋁
ac ∈ [2,3]

S1 / 0

S0 / 0

ls = 0

S2 / 1

(lin12 = 0 ⋀ ls = 1) ⋁
(lin12 ∈ [1,3] ⋀ ls = 0 ⋀ let23 = 0)

(ls = 1 ⋀ let23 = 1) ⋁
(lin12 = 0 ⋀ ls = 1)

lin12 = 0 ⋀ ls = 1

(lin12 = 0 ⋀ ls = 0 ⋀ let23 = 0) ⋁
(ls = 0 ⋀ let23 = 1)

lin12 ∈ [1,3] ⋀ ls = 1 ⋀ let23 = 0

lin12 ∈ [1,3] ⋀ ls = 1

lin12 = 3 ⋁
(lin12 ∈ [1,2] ⋀ ls = 1)

(a)

S0 / 0 S1 / 0

ac = 3

S2 / 1

ac ∈ [2,3] ⋁
(ac ∈ [1,2] ⋀ hyp = 1)

ac = 0 ⋁
(ac ∈ [0,1] ⋀ hyp = 0)

(ac = 2 ⋀ hyp = 0) ⋁
(ac ∈ [1,2] ⋀ hyp = 1)

(ac = 1 ⋀ hyp = 1) ⋁
ac ∈ [2,3]

S0 / 0 S1 / 1

(lin12 = 0 ⋀ ls = 1 ⋀ sem5 = 0) ⋁
(lin12 ∈ [1,3] ⋀ ls = 1)

lin12 = 0 ⋀ sem5 = 1

lin12 ∈ [1,3] ⋀ ls = 1

lin12 = 0 ⋀ ls = 0

(b)

Figure 10. Synthesized update functions given two different connection topologies, for let23, and lst. (a) The topology with lst and lin12
inhibited by let23. The template allows for three let23 states and three lst states. (b) The topology with lst and lin12 inhibited by sem5. The
template allows for three let23 states and two lst states.

example time mem. # calls time
calls holes search space

VPC1 96.64 2.34 282 0.09 (3, 3) 2.25 · 1034

VPC2 87.77 2.33 285 0.08 (3, 2) 1.21 · 1021

VPC3 48.29 0.77 139 0.10 (4, 3) 1.47 · 1042

VPC4 49.18 1.26 133 0.09 (5, 3) 7.25 · 1050

Sensors 4.30 2.40 51 0.01 (3, 2, 2) 2.53 · 1013

example time mem. # calls time
calls

pruned
total

VPC1 2964.82 2.20 3805 0.54 4/48
VPC2 1845.94 1.69 3544 0.31 3/48
VPC3 273.77 1.31 491 0.29 4/44
VPC4 316.32 1.35 482 0.37 4/44

Sensors 14.46 0.71 167 0.04 3/8

(a) (b)

Figure 11. All times are in seconds, and memory usage is in gigabytes. (a) Evaluation results for synthesis. The number of levels (i.e.,
states) for each synthesized update function is shown in the holes column. (b) Evaluation results for specification pruning. We report for each
example the size of the pruned specification domain and the size of the original specification domain.

Stochastic modeling An alternative to modeling biological sys-
tems using non-deterministic concurrency is to use stochasticity [2,
18, 24]. If we were interested in making predictions on the sys-
tem’s output behavior, i.e., the most likely the behavior of the cell
for a given mutation, we might select a model that predicts con-
centrations of proteins under varying initial parameters, including
those not yet measured in the lab. Such predictive models are often
stochastic.

In contrast, we care to only discover a mechanistic explanation
for the cellular system (i.e., how proteins communicate to agree on
a particular cell fate). It is appropriate here to rely on a discrete
model because the modeling problem is to find a program that
reproduces each observed outcome on at least one execution —
as opposed to some ratio of all executions. The existence of such
a schedule is sufficient to determine the need to have the crucial
protein-protein interaction.

Synthesis algorithms for concurrent systems. Our synthesis al-
gorithm extends the synthesis algorithm for concurrent data struc-
tures [28]. That work showed how to extend the CEGIS algo-
rithm [29] from the sequential setting into the semantics of concur-
rent programs. The resulting algorithm however did not handle the
richer specification used in this paper (i.e., the angelic correctness).
Indeed, new algorithms had to be developed for the specifications
of this paper. The Paraglider project developed synthesizers for
concurrent data structures by deriving them from high-level spec-
ifications [31]. It is not clear how these derivation algorithms can
be adapted to synthesis of concurrent systems under input-output
examples such as ours.

Model checking [5–7, 11, 18] and abstract interpretation [9]
have been applied to analyze various biological systems. All such
efforts to manually construct and validate models have severely
demonstrated the need for a synthesis system.

Various other paradigms have been used to model biological
systems, including Petri nets [8], boolean networks [23], and pro-
cess algebras [26]. While our techniques are not directly applica-
ble, our success in synthesis for a model previously expressed in
the expressive RM formalism demonstrates potential for synthesis
in these other formalisms as well.

9. Conclusion
We present a language and develop algorithms for synthesizing
concurrent models from experiments that perform mutations on bi-
ological cells and observe the results of the mutation on developed
cells. We synthesize models that reproduce all non-deterministic
outcomes of experiments. This variant of synthesis requires a 3QBF
algorithm, which we design by allowing three solvers to commu-
nicate counterexamples. We also develop algorithms for analyzing
specification ambiguity, ascertaining that a model is the sole bio-
logical explanation whenever possible under given biological as-
sumptions, and computing minimal non-ambiguous specifications.
We carried out a significant case study, synthesizing a model of
vulval cell fate specification in the C. elegans earthworm that ex-
presses a previously unknown biological hypothesis.

References
[1] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal

Methods in System Design, 15(1):7–48, 1999.

[2] A. Arkin, J. Ross, and H. H. McAdams. Stochastic kinetic analysis
of developmental pathway bifurcation in phage lambda-infected Es-
cherichia coli cells. Genetics, 149(4):1633–1648, Aug 1998.

[3] Anil Aswani, Soile V. E. Keränen, James Brown, Charless C. Fowlkes,
David W. Knowles, Mark D. Biggin, Peter Bickel, and Claire J. Tom-
lin. Nonparametric identification of regulatory interactions from spa-
tial and temporal gene expression data. BMC Bioinformatics, 11:413,
2010.

[4] Nathan A. Barker, Chris J. Myers, and Hiroyuki Kuwahara. Learn-
ing genetic regulatory network connectivity from time series data.
IEEE/ACM Trans. Comput. Biology Bioinform., 8(1):152–165, 2011.

[5] Grégory Batt, Calin Belta, and Ron Weiss. Temporal logic analysis
of gene networks under parameter uncertainty. IEEE Transactions of
Automatic Control, page 2008.

[6] Grégory Batt, Delphine Ropers, Hidde de Jong, Johannes Geiselmann,
Radu Mateescu, Michel Page, and Dominique Schneider. Analysis
and verification of qualitative models of genetic regulatory networks:
A model-checking approach. In IJCAI, 2005.

[7] Nathalie Chabrier and François Fages. Symbolic model checking of
biochemical networks. CMSB ’03, 2003.

[8] C. Chaouiya. Petri net modelling of biological networks. Brief.
Bioinformatics, 8(4):210–219, Jul 2007.

[9] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Ab-
stract interpretation of cellular signalling networks. VMCAI’08, pages
83–97.

[10] Leonardo de Moura and Nikolaj Bjørner. Z3: Efficient SMT solver. In
TACAS’08: Tools and Algorithms for the Construction and Analysis
of Systems, volume 4963/2008 of Lecture Notes in Computer Science,
pages 337–340, 2008.

[11] David L. Dill. Model checking cell biology. In CAV, page 2, 2012.
[12] J. Fisher, N. Piterman, A. Hajnal, and T. A. Henzinger. Predictive

modeling of signaling crosstalk during C. elegans vulval development.
PLoS Comput. Biol., 3(5):e92, May 2007.

[13] Jasmin Fisher, David Harel, and Thomas A. Henzinger. Biology as
reactivity. Commun. ACM, 54(10):72–82, 2011.

[14] Jasmin Fisher and Thomas A. Henzinger. Executable cell biology.
Nature Biotechnology, 25(11):1239–1249, November 2007.

[15] Jasmin Fisher, Thomas A. Henzinger, Maria Mateescu, and Nir Piter-
man. Bounded asynchrony: Concurrency for modeling cell-cell inter-
actions. In FMSB, pages 17–32, 2008.

[16] https://oeis.org/A000670.
[17] Sumit Gulwani. Automating string processing in spreadsheets us-

ing input-output examples. In Proceedings of the 38th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’11, pages 317–330. ACM.

[18] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tym-
chyshyn. Probabilistic model checking of complex biological path-
ways. Theoretical Computer Science, 319(3):239–257, 2008.

[19] Na’aman Kam, Irun R. Cohen, and David Harel. The immune system
as a reactive system: Modeling t cell activation with statecharts. In
HCC, pages 15–22, 2001.

[20] Na’aman Kam, David Harel, Hillel Kugler, Rami Marelly, Amir
Pnueli, E. Jane Albert Hubbard, and Michael J. Stern. Formal model-
ing of c. elegans development: A scenario-based approach. In CMSB,
pages 4–20, 2003.

[21] http://www.cs.berkeley.edu/~koksal/.
[22] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Scala to the

Power of Z3: Integrating SMT and Programming. In CADE, pages
400–406, 2011.

[23] S. Li, S. M. Assmann, and R. Albert. Predicting essential compo-
nents of signal transduction networks: a dynamic model of guard cell
abscisic acid signaling. PLoS Biol., 4(10):e312, Oct 2006.

[24] H. H. McAdams and A. Arkin. Stochastic mechanisms in gene ex-
pression. Proc. Natl. Acad. Sci. U.S.A., 94(3):814–819, Feb 1997.

[25] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala:
a comprehensive step-by-step guide. Artima Press, 2008.

[26] Aviv Regev and Ehud Shapiro. The pi-calculus as an abstraction for
biomolecular systems. 2004.

[27] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman.
Continuous valuations of temporal logic specifications with applica-
tions to parameter optimization and robustness measures. Theor. Com-
put. Sci., 412(26):2827–2839, 2011.

[28] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav
Bodik. Sketching concurrent data structures. In Proceedings of the
2008 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’08, pages 136–148. ACM.

[29] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. Combinatorial sketching for finite programs. In
ASPLOS-XII, pages 404–415, New York, NY, USA, 2006. ACM.

[30] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From
program verification to program synthesis. In POPL, 2010.

[31] Martin Vechev and Eran Yahav. Deriving linearizable fine-grained
concurrent objects. SIGPLAN Not., 43(6):125–135, June 2008.

[32] A. S. Yoo, C. Bais, and I. Greenwald. Crosstalk between the EGFR and
LIN-12/Notch pathways in C. elegans vulval development. Science,
303(5658):663–666, Jan 2004.

