Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data

Ali Sinan Köksal1, Anthony Gitter2, Kirsten Beck3, Aaron McKenna3, Saurabh Srivastava4, Nir Piterman5, Rastislav Bodík1, Alejandro Wolf-Yadlin3, Ernest Fraenkel6, Jasmin Fisher7

1University of California, Berkeley, 2University of Wisconsin-Madison, 3University of Washington, 420n, 5University of Leicester, 6Massachusetts Institute of Technology, 7Microsoft Research Cambridge
Beyond Pathway Maps

BioCarta EGF Signaling Pathway

http://www.biocarta.com/pathfiles/h_egfpathway.asp
Data for Inferring Specific Pathways

Temporal phosphorylation
- Global response to receptor stimulus
- Not all activity is phosphorylation
- Irrelevant/spurious phosphorylation

Undirected network topology
- Sparse, high-confidence connections
- Obtained by methods such as PCSF
- No temporal precedence knowledge

Prior knowledge
- Directed kinase-substrate interactions
Inferring Network Models

- Condition-specific pathway maps
- Signed directed graphs
- Signaling event timing annotations
From Data to Constraints

Explore all signed directed graphs that satisfy:

Topological constraints
All interactions must originate from the source

Temporal constraints
Sequences of interactions must agree with temporal precedence

Prior knowledge constraints
Inferred networks may not violate known directions

All network models
Topological Constraints

All interactions must originate from the source.

Valid model
All interactions are on a path from the source.

Invalid model
E activates C but is not reachable from the source.
Temporal Constraints

Interaction paths consistent with temporal data:

- Act\textsubscript{A} for A
- Act\textsubscript{B} for B
- Act\textsubscript{C} for C
- Inh\textsubscript{D} for D
Temporal Constraints

Interaction path **inconsistent** with temporal data:

- **act\(_A\)**
- **act\(_B\)**
- **act\(_C\)**
- **inh\(_D\)**

A cannot precede C
Summarizing All Valid Models

B is unobserved, we can’t determine edge sign

Summarize all valid solutions as a union of networks
EGFR Case Study: Materials

Stimulate EGFR Flp-In HEK-293 cells with EGF ligand. Mass spectrometry at 0, 2, 4, 8, 16, 32, 64, 128 mins. Observe 203 significantly phosphorylated proteins.
We inferred a summary network of 413 edges.

202 edges have the same direction in all models.

38 edges have the same sign and direction in all models.

83% of phosphorylated proteins are included.

MAPK subnetwork
Inferred MAPK Subnetwork

MAP2K1 unobserved but recovered by topology

Activation of MKL1 inferred via temporal data and prior knowledge
Experimental Validation

Preliminary results validating the prediction $\text{Abl2} \rightarrow \text{Crk}$

- **Loading control** (β-actin)
- **Phospho-CrkII** (Tyr221) ab

| das 1 nM | 4’ | 16’ | 0’ | 4’ | 16’ EGF |

a-pCrk blot, inhibition of Abl2 with 1 nM dasatinib

Relative phosphorylation

- das1nM 4’EGF
- das1nM 16’EGF
- no treatment
- 4’EGF
- 16’EGF
Conclusion

Pathway models that agree with actual dynamic signaling events

Joint inference with multiple types of constraints (topological, temporal, prior knowledge, ...)

Detect non-ambiguous predictions across all valid models for experimental validation
Acknowledgements

Anthony Gitter
Ernest Fraenkel
Rastislav Bodík
Saurabh Srivastava

Jasmin Fisher
Nir Piterman
Alejandro Wolf-Yadlin
Kirsten Beck
Aaron McKenna