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Overview 

Concurrent program synthesis from examples 
Programs ≡ biological explanations 
Examples ≡ biological experiments 

We assist natural sciences with formal methods  
•  Given experiments, are there other explanations? 
•  If so, compute a new, disambiguating experiment 
•  This avoids conducting superfluous experiments 

This talk: how stem cells coordinate their fates 
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Understanding Diseases 

•  “Cancer is fundamentally a disease of failure of 
regulation of tissue growth. In order for a 
normal cell to transform into a cancer cell, the 
genes which regulate cell growth and 
differentiation must be altered.” – from Wikipedia 

•  Research on cell differentiation helps 
understanding diseases such as cancer. 
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C. elegans: A Model Organism 

Earthworm used in developmental biology. 

959 cells; its organs found in other animals. 

Differentiation studied on vulval development. 
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Differentiation and 
then development 
into organ parts 
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Initial division of embryo 

Identical precursor 
cells collaborate to 

decide their fate 



Research Goal of Biologists 
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What is the mechanism (program) within each cell  
for deciding fates through communication? 



Building Blocks of these Programs 

Cells contain communicating proteins. 

Protein interaction: a protein senses the 
concentration of other proteins. 

Interaction is either activation or inhibition. 
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How the Vulval Cells Differentiate 
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If cells sense the same signal 
strength, data races occur. 

... 



How Biologists Discover Interactions 

•  Measuring protein levels over time is infeasible. 
•  If such “cell tracing” is infeasible, infer protein 

interaction from end-to-end experiments. 
•  That is, mutate cells  observe resulting fates. 
•  Mutation experiments change protein behavior 

in a controlled way: 
– Enable a protein via gene overexpression. 
– Disable a protein via gene suppression. 
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A Mutation Experiment 
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Putting Experiments Together 
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Experiment AC lin-12 lin-15 let-23 lst Fate decisions 

1 ON ON ON ON ON {332123} 

2 ON OFF ON ON ON {331113} 

3 ON ON OFF ON ON {112121,122121, 212121} 

... 

48 ... 

No protein is mutated. 

lin-12 is turned off. Multiple outcomes observed 

Fate of six neighboring cells 

Experiments over 35 years by 11 groups 



How to Build Accurate Models? 
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Inhibition discovered 
by predictive modeling 

[Fisher et al. 2007] 

... 



Semantics of the Modeling Language 
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Cell 1 Cell 2 
•  Program has cells 
•  Non-deterministic outcomes 

via schedule interleaving  
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Synthesizing Cellular Programs 
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Synthesis of Programs 
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specification 

biological 
insight 

synthesizer completed 
program 

Experiment AC lin-12 lin-15 let-23 lst Fate decisions 

1 ON ON ON ON ON {332123} 

2 ON OFF ON ON ON {331113} 

3 ON ON OFF ON ON {112121,122121, 212121} 

... 

Given as a partial program 



Partial Programs 
Partial programs express biological insight: 
•  Which proteins are in the cell 
•  Which proteins may interact 

Update functions can be unknown. 
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Synthesis Algorithm 
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Correctness Condition 

Safety: all schedules must lead the program to produce 
experiment outcomes observed in the wet lab. 

∀mutation m. ∀schedule s. P(m, s)∈E(m) 

Completeness: each observed experiment outcome must 
be reproducible by the program for some schedule. 

∀mutation m. ∀fate f∈E(m). ∃schedule s. P(m, s) = f 
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Experiment AC lin-12 lin-15 let-23 lst Fate decisions 

1 ON ON ON ON ON {332123} 

2 ON OFF ON ON ON {331113} 

3 ON ON OFF ON ON {112121, 122121,  212121} 

... 



Counterexample-Guided Inductive Synthesis 
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Synthesized Models 

•  We synthesized two models of  VPCs. 
•  Input: Partial model that specifies known, 

simple protein behaviors. 
•  Output: Synthesized update functions for two 

key proteins. 
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Additional Algorithms for  
Going Beyond Synthesis 

to Assist Scientists 
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Querying Spaces of Models 

•  Assume a scientist obtains a formal model that 
agrees with all performed experiments. 

•  How can he make sure that a future mutation 
experiment won’t invalidate this model? 

•  We can search for an alternative model that 
differs on a future experiment. 

•  Performing the new experiment will disambiguate 
between the two models. 
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Finding Disambiguating Experiments 

Simulation of future experiments using partial 
data: 
•  Assuming we didn’t have the experiments from 

Sternberg and Horvitz 1989, we can synthesize 
four hypothesis models. 

•  Our tool suggests experiments from this paper to 
invalidate two of them. 
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Differentiating Plausible Models 

•  Can we differentiate the two plausible models that 
we synthesized?  

•  Mutating the modeled proteins will not suffice to 
disambiguate them, which suggests other methods 
(e.g. gene marking). 
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Avoiding Superfluous Experiments 

•  Can the scientist avoid performing superfluous 
experiments when revalidating results? 

•  We can search for a minimal, non-ambiguous 
subset of a set of experiments. 

•  Out of 48 VPC experiments, 4 suffice to yield 
a unique model from a given partial program. 
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Conclusion 

Biological experiments as specification for synthesis 

A synthesis algorithm with three solvers 

Explore spaces of alternative models 

Avoid conducting superfluous experiments 
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